NAME: _____

DATE: _____

Hardy-Weinberg Practice Problems

1. At a locus with a dominant and recessive allele in a population that is in Hardy-Weinberg equilibrium, 16% of the individuals are homozygous for the recessive allele.

- a) What is the frequency of the dominant allele? Since q = 0.4 & p+q = 1, p + 0.4 = 1, p = 0.6
- b) What is the frequency of the recessive allele? Given: q2 = 0.16, so q = 0.4
- c) What proportion of the population will show the dominant phenotype? 1 - 0.16 = 0.84 OR $f(AA) + f(Aa) = (0.6)^2 + 2(0.6)(0.4) = 0.36 + 0.48 = 0.84$
- d) What proportion of the population will show the recessive phenotype? Since q = 0.4, f(aa) = q² = (0.4)² = 0.16 Alternatively, the f(recessive phenotype) = f(homozygous recessive genotype) = 0.16 given in the problem.
- e) What proportion of the population will have the homozygous dominant genotype? Since p = 0.6, $f(AA) = p^2 = (0.6)^2 = 0.36$
- f) What proportion of the population will be heterozygous? Since p = 0.6 & q = 0.4, f(Aa) = 2pq = 2(0.6)(0.4) = 0.48
- g) What proportion of the population will have the homozygous recessive genotype? Given in the problem f(aa) = 0.16Since q = 0.4, $f(aa) = q^2 = (0.4)^2 = 0.16$

2. 25% of a population in Hardy-Weinberg equilibrium has a recessive-based disease. To have the disease, an individual must have both copies of the recessive allele.a) What is the frequency of the recessive allele?

a)	what is the nequency of the recessive anely
	Given in the problem $f(aa) = 0.25$, so $q^2 = 0.25$ $q = 0.5$
b)	What is the frequency of the dominant allele?
	Since $q = 0.5 \& p+q = 1$, $p + 0.5 = 1$, $p = 0.5$
c)	What proportion of the population will show the dominant phenotype?
	f(dominant phenotype) + f(recessive phenotype) = 1
	f(dominant phenotype) + 0.25 = 1 f(dominant phenotype) = 0.75
d)	What proportion of the population will show the recessive phenotype?
	Given in the problem = 0.25
e)	What proportion of the population will have the homozygous dominant genotype?
e)	What proportion of the population will have the homozygous dominant genotype?

- Since p = 0.5, $f(AA) = p^2 = (0.5)^2 = 0.25$
- f) What proportion of the population will be heterozygous? Since p = 0.5 & q = 0.5, f(Aa) = 2pq = 2(0.5)(0.5) = 0.50
- g) What proportion of the population will have the homozygous recessive genotype? Given in the problem f(aa) = 0.25Since q = 0.5, $f(aa) = q^2 = (0.5)^2 = 0.25$

3. 51% of a population in Hardy-Weinberg equilibrium is normal for the recessive-based disease, 3TC. f(AA) + f(Aa) + f(aa) = 1 & 51% = f(AA) + f(Aa), so f(aa) = 0.49

 $f(aa) = q^2 = 0.49, q = f(a) = 0.7$ p + q = 1 p + 0.7 = 1 p = 0.3

- a) What percentage of the population is heterozygous for this trait? f(Aa) = 2pq = 2(0.3)(0.7) = 0.42
- b) What percentage of the population shows the recessive phenotype? Since q = 0.7, f(aa) = q² = (0.7)² = 0.49 Given in the problem: f(aa) = 1 - 0.51 = 0.49
 c) What is the frequency of the dominant allele?
 - $\mathbf{p} = 0.3$ SEE ABOVE.

4. 4% of a population in Hardy-Weinberg equilibrium has phenylketonuria (PKU), a metabolic disorder that results from the homozygosity for a recessive allele.

- a) What is the frequency of the recessive allele? $f(aa) = q^2 = 0.04, \qquad q = f(a) = 0.2$
- b) What is the frequency of the dominant phenotype?
 f(dominant phenotype) + f(recessive phenotype) = 1
 f(dominant phenotype) + 0.04 = 1
 f(dominant phenotype) = 0.96
- c) What is the frequency of homozygote recessive in this population? Given in the problem since f(recessive phenotype) = f(homozygous recessive genotype) = 0.04
- d) What is the frequency of homozygote dominant in this population? If q = 0.2 & p + q = 1, p = 0.8 $f(AA) = p^2 = (0.8)^2 = 0.64$

5. 91% of a feline population in Hardy-Weinberg equilibrium display polydactyly. Polydactyly is a dominant disease.

- a) What is the frequency of the recessive allele? f(AA) + f(Aa) + f(aa) = 1 & f(AA) + f(Aa) = 0.91 0.91 + f(aa) = 1 f(aa) = 0.09 f(aa) = q² = 0.09, q = f(a) = 0.3
 b) What is the frequency of felines with the homozygous recessive genotype? f(aa) = q² = 0.09 SEE ABOVE FOR FURTHER EXPLANATION
- c) What is the frequency of felines who do not display polydactyly? $f(aa) = q^2 = 0.09$ SEE ABOVE FOR FURTHER EXPLANATION
- 6. A population in Hardy-Weinberg has an allelic frequency of the recessive allele of 0.20.a) What is the frequency of the dominant allele?
 - **GIVEN:** q = 0.20 & p + q = 1, p + 0.2 = 1 p = 0.8
 - b) What is the frequency of the heterozygote genotype in this population? p = 0.8 & q = 0.2, f(Aa) = 2(p)(q) = 2(0.8)(0.2) = 0.32
 - c) What proportion of the population display the dominant phenotype?

f(AA) + f(Aa) + f(aa) = 1 & q = 0.2 $q^2 = f(aa) = 0.04$ f(AA) + f(Aa) + 0.04 = 1f(AA) + f(Aa) = 0.96